Aspecto tecnológico de la inteligencia artificial
ASPECTO TECNOLÓGICO
Cada neurona está conectada con otras a través de unos enlaces.
En estos enlaces el valor de salida de la neurona anterior es multiplicado por un valor de peso. Estos pesos en los enlaces pueden incrementar o inhibir el estado de activación de las neuronas adyacentes.
Del mismo modo, a la salida de la neurona, puede existir una función limitadora o umbral, que modifica el valor resultado o impone un límite que no se debe sobrepasar antes de propagarse a otra neurona. Esta función es conocida como función de activación.
Estos sistemas aprenden y se forman a sí mismos, en lugar de ser programados de forma explícita, y sobresalen en áreas donde la detección de soluciones o características es difícil de expresar con la programación convencional. Para realizar este aprendizaje automático, normalmente, se intenta minimizar una función de pérdida que evalúa la red en su total. Los valores de los pesos de las neuronas se van actualizando buscando reducir el valor de la función de pérdida. Este proceso se realiza mediante la propagación hacia atrás.
El objetivo de la red neuronal es resolver los problemas de la misma manera que el cerebro humano, aunque las redes neuronales son más abstractas. Las redes neuronales actuales suelen contener desde unos miles a unos pocos millones de unidades neuronales.
Nuevas investigaciones sobre el cerebro a menudo estimulan la creación de nuevos patrones en las redes neuronales. Un nuevo enfoque está utilizando conexiones que se extienden mucho más allá y capas de procesamiento de enlace en lugar de estar siempre localizado en las neuronas adyacentes.
Comentarios
Publicar un comentario